CRYSTAL STRUCTURE OF ${\tt Li_2TbF_6}$ and Magnetic study under high magnetic field

D. Avignant, M. El-Ghozzi, J. C. Cousseins Laboratoire de Chimie des Solides, Université Blaise Pascal, 63177 Aubière (France)

Y. Laligant, A. Le Bail, G. Ferey
Laboratoire des Fluorures, UA 449, Faculté des Sciences, route de Laval, 72017 Le Mans Cédex (France)

and M. Guillot Laboratoire Louis Néel, CNRS, 38042 Grenoble (France)

The crystal structure of Li_2TbF_6 was solved ab-initio at 300 and 5 K usinf X-ray and neutron powder diffraction data respectively. This compound crystallizes in the monoclinic system, space group P2₁/C (n° 14), Z = 4, with a = 7.585(1) Å, b = 4.965(1) Å, c = 11.116(1) Å and β = 106.96(1)° at 300 K.

The structure was solved and refined using direct methods and Rietveld profile refinement techniques. Li₂TbF₆ exhibits a completely new structural type for A_2MF_6 compounds with Tb⁴⁺ in bicapped trigonal prisms. Lithium ions in this structure adopt two types of coordination polyhedra : octahedra and unusual square pyramids. Relationships with γ -Na₂UF₆ and CaTa₂O₆ structural types will be presented.

The saturation magnetization measured in a 200 kHe magnetic field at 4.2 K has been found to be equal to 6.9 $\mu_{\rm B}$, what provides confirmation of the degree 4+ of the terbium which is isoelectronic with Gd³⁺ and exhibits a ${}^{8}{\rm S}_{7/2}$ ground state.

The Curie law is not found to be obeyed at low temperatures. This behaviour will be discussed in terms of magnetic interactions or splitting of the ground state level in zero-field.